|
Grains may be lost in the pre-harvest, harvest and post-harvest stages. Pre-harvest losses occur before the process of harvesting begins, and may be due to insects, weeds and rusts. Harvest losses occur between the beginning and completion of harvesting, and are primarily caused by losses due to shattering. Post-harvest losses occur between harvest and the moment of human consumption. They include on-farm losses, such as when grain is threshed, winnowed and dried, as well as losses along the chain during transportation, storage and processing. Important in many developing countries, particularly in Africa, are on-farm losses during storage, when the grain is being stored for auto-consumption or while the farmer awaits a selling opportunity or a rise in prices. ==Potential for loss== There is potential for loss throughout the grain harvesting and agricultural marketing chains. During stripping of maize grain from the cob, known as shelling, losses can occur when mechanical shelling is not followed up by hand-stripping of the grains that are missed. Certain shellers can damage the grain, making insect penetration easier. For crops other than maize, threshing losses occur as a result of spillage, incomplete removal of the grain or by damage to grain during the threshing. They can also occur after threshing due to poor separation of grain from the chaff during cleaning or winnowing. Incomplete threshing usually occurs in regions with high labour costs, particularly at harvest time, when labour is too scarce and expensive to justify hand-stripping after an initial mechanical thresh. Certain mechanical threshers are designed only for dry grain. A wet season's paddy harvest may clog the screens and grain will be lost. Cleaning is essential before milling. On the farm, cleaning is usually a combination of winnowing and removal by hand of heavier items such as stones. Losses can be low when the operation is done carefully but high with carelessness. With correct equipment, cleaning losses should be low in mills, but grain may be separated together with dirt or, alternatively, dirt may be carried forward into the milling stages. In drying, grain that is dried in yards or on roads, as is common in parts of Asia, may be partially consumed by birds and rodents. Wind, either natural or from passing vehicles in the case of road drying, can blow grain away. The main cause of loss during drying is the cracking of grain kernels that are eaten whole, such as rice. Some grains may also be lost during the drying process. However, failure to dry crops adequately can lead to much higher levels of loss than poor-quality drying, and may result in the entire harvest becoming inedible. Adequate drying by farmers is essential if grains are to be stored on-farm and poorly dried grains for the market need to be sold quickly to enable the marketing-processing chain to carry out adequate drying before the grains become spoilt. With a high moisture content, grain is susceptible to mould, heating, discoloration and a variety of chemical changes. Ideally, most grains should be dried to acceptable levels within 2–3 days of harvest.〔Harris, Kenton L. and Carl J. Lindblad, eds. Postharvest Grain Loss Assessment Methods - A Manual of Methods for the Evaluation of Postharvest Losses () American Association of Cereals Chemists, 1976〕 One of the problems in assessing levels of post-harvest loss is in separating weight loss caused by the very necessary drying operations from weight loss caused by other, controllable, factors. Milling to remove the outer coats from a grain may take place in one or more stages. For paddy rice considerable mechanical effort is needed to remove these layers. Any weakness in the kernel will be apparent at this stage. Even with grain in perfect condition, correctly set milling and polishing machinery is essential to yield high processing outturns. Complete separation of edible from less-desired products is always difficult to achieve but, even so, there are significant differences in milling efficiency. In the case of rice, milling outturns can vary from 60% or less to around 67%, depending on the efficiency of the mill. Even a 1% increase in yield of whole grain rice can thus result in huge increases in national food resources. Grains are produced on a seasonal basis. In many places there is only one harvest a year. Thus most production of maize, wheat, rice, sorghum, millet, etc. must be held in storage for periods varying from a few days up to more than a year. Storage therefore plays a vital role in grain supply chains. For all grains, storage losses can be considerable but the greatest losses appear to be of maize, particularly in Africa. Losses in stored grain are determined by the interaction between the grain, the storage environment and a variety of organisms. Contamination by moulds is mainly determined by the temperature of the grain and the availability of water and oxygen. Moulds can grow over a wide range of temperatures, but the rate of growth is lower with lower temperature and less water availability. The interaction between moisture and temperature is important. Maize, for example, can be stored for one year at a moisture level of 15% and a temperature of 15 °C. However, the same maize stored at 30 °C will be substantially damaged by moulds within three months.〔Proctor, D.L., Grain Storage Techniques () FAO, Rome, 1994〕 Insects and mites (arthropods) can, of course, make a significant contribution towards the deterioration of grain, through the physical damage and nutrient losses caused by their activity. They can also influence mould colonisation as carriers of mould spores and because their faecal material can be utilised as a food source by moulds. In general, grain is not infested by insects below 17 °C whereas mite infestations can occur between 3 and 30 °C and above 12% moisture content. The metabolic activity of insects and mites causes an increase in both the moisture content and temperature of infested grain. Another important factor that can affect mould growth is the proportion of broken kernels. There are about 1,700 species of rodents in the world, but only a few species contribute significantly to post-harvest losses. Three species are found throughout the world: the house mouse (''Mus musculus''), the black rat (''Rattus rattus'') and the brown rat while a few other species are important in Africa and Asia.〔Proctor, D.L., Grain Storage Techniques () FAO, Rome, 1994〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Post-harvest losses (grains)」の詳細全文を読む スポンサード リンク
|